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LETTER TO THE EDITOR 
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clusters 
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Received 6 January 1984 

Abstract. On the basis of scaling assumptions, critical behaviour of distribution (number) 
of dead (dangling) ends in the infinite cluster of percolating systems is investigated. Critical 
exponents describing dead-end distribution are introduced and scaling relations between 
them are derived. The exponents are also expressed in terms of other exponents Y, p and 
pB for percolation and their explicit values are evaluated from known estimates for U, p 
and pB. 

In the last decade, there has been a growing interest in the study of percolation as a 
model describing essential features of random systems (for reviews, see Stauffer 1979, 
Essam 1980). The understanding of the geometrical structure of percolation clusters 
is indispensable in order to investigate physical properties such as conductivity, diff usiv- 
ity and magnetic order. Near the percolation threshold pc and within the length scale 
less than coherence length 6, clusters are self-similar (Kapitulnik et a1 1983) and 
various scaling relations hold (Stauffer 1979). Above p c ,  the system consists of one 
infinite cluster and many finite clusters. The infinite clusters are also divided into two 
parts, the backbone and dead (dangling) ends (Kirkpatrick 1978). On the basis of the 
scaling assumption, the distribution (number) of finite clusters is well understood 
(Stauffer 1979), whereas little is known about the distribution (number) of dead ends. 
Since the infinite cluster reflects connectivity of the system and is responsible for most 
of the physical quantities, the investigation of dead-end distribution, which is the 
purpose of this letter, is of particular significance. Here we adopt scaling arguments 
similar to those for finite cluster distribution presented by Stauffer (1979). 

In this article, we define a dead (dangling) end as follows. Consider the cluster 
connected to the backbone only at one root point. When a potential difference is 
applied between the root point and another point in the cluster, current flow is confined 
to part of the cluster. We define an s-sites dead end by the largest component of the 
cluster composed of s sites (bonds) which carry current. The remaining part of the 
cluster consists of some clusters attached to the dead ends at one point. For each 
cluster, an 8’-sites dead end is defined in a similar way. Iterating this procedure until 
all sites in the infinite cluster are assigned to the backbone and dead ends, we can 
define the distribution of s-sites dead ends uniquely. This definition is different from 
the customary one where a dead end represents the whole cluster directly connected 
to the backbone. 

Let nD(s, p )  be a distribution function of s-sites dead ends defined by 

number of s-sites dead ends 
* (1) nD(s’ ’) = number of sites belonging to the whole infinite cluster 
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As usual (Stauffer 1979), we introduce critical exponents for dead-end distribution as 

where 8, denotes the sum over all dead ends and the subscript ‘sing’ means the singular 
part, i.e., the leading non-analytic part of the subscripted quantity. By definition, we 
have 

where PB is the probability of sites in the infinite cluster belonging to the backbone. 
In the vicinity of the percolation threshold, PB varies singularly as PBa.$G/.$dc= 
(p-p,)’B-’, where dB = d-pB/ v is the fractal dimensionality of the backbone and 
dc = d - P /  Y is that of the whole cluster (Kirkpatrick 1978). Then we find [I;, SnDlsing = 
PB and 

P D ~ P B - P .  (7) 

We make scaling arguments in a normal way (Stauffer 1979). That is, we assume 
that all singular behaviour of dead-end distribution is dominated by an essentially 
unique typical dead-end size given by 

s5a(p-pC)-’luD (8) 

n D (  8, p )  = S-TDF( s/ sg). 

and the distribution function nD is expressed in the scaling form 

(9) 

Substitution of equations (8) and (9) into equations (2)-(5) leads to scaling relations 

2 - a D = ( 7 D  - 1 ) / (TD, PD = ( ~ D - ~ ) / C D ,  -?D= (7D-3) / (TD,  

1/ 8 D  = 7 ~ -  2, (10) 

because [E, sknDlsinga ( p - p c ) ( T ~ - l - k ) ’ u  and [Z, snD e-hs]l,inga h T ~ - 2  (for details, see 
Stauffer 1979). The hyperscaling relation is also derived on the basis of the scaling 
assumption about the radius R, of an s-sites dead end. Here we postulate 

Rs = .$G(s/s,). (11) 

R $ a s .  (12) 

On the other hand, R, is related to s by 

Comparing these equations, we get G(x)  a X ” ~ B  and the hyperscaling relation 

d B V  = l / (TD. (13) 
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Equations (7), (10) and (13) give expressions of all critical exponents for dead-end 

(14) 

distribution in terms of U, /3 (d,) and PB (de) 
2 - aD = d u  - P = dc V, 

UD = 1/ (dU - Be) = 1/ dg V, 
7~ = 1 + (dV-p)/(dV-pB) = 1 + dc-dg. 

(18) 

(19) 
Using known estimates for V, P and PB (Stauffer 1979, Kirkpatrick 1978, Stanley 
19771, we can evaluate explicit values of critical exponents. The results are listed in 
table 1. These critical exponents may provide useful information on physical properties 
of percolating systems. 

TaMe 1. Critical exponents for dead end distribution 

d V a  P a  P: OD PD YD 8 ,  UD TD 

1 1 0 0 1 0 1 03 1 2 
2 1.35 0.14 0.5 -0.6 0.4 1.8 6.1 0.5 2.2 
3 0.84 0.4 0.9 -0.1 0.5 1.1 3.2 0.6 2.3 
4 0.7 0.5 1.1 -0.3 0.6 1.1 2.8 0.6 2.4 
5 0.6 0.7 -0.3 
6 0.5 1 2' 0 1 0 1 1 3 

a Stauffer (1979), bKirkpatrick (1978), Stanley (1977). 
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